Part Number Hot Search : 
B72580 8T49N028 5D0N50F TSP080 045984 ZA2BD2 3011I101 2EZ30D5
Product Description
Full Text Search
 

To Download AD5424 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors AD5547/AD5557
FEATURES
Dual channel 16-bit resolution: AD5547 14-bit resolution: AD5557 2- or 4-quadrant, 4 MHz BW multiplying DAC 1 LSB DNL 1 LSB INL for AD5557, 2 LSB INL for AD5547 Operating supply voltage: 2.7 V to 5.5 V Low noise: 12 nV/Hz Low power: IDD = 10 A max 0.5 s settling time Built-in RFB facilitates current-to-voltage conversion Built-in 4-quadrant resistors allow 0 V to -10 V, 0 V to +10 V, or 10 V outputs 2 mA full-scale current 20%, with VREF = 10 V Extended automotive operating temperature range: -40C to +125C Selectable zero-scale/midscale power-on presets Compact TSSOP-38 package
FUNCTIONAL BLOCK DIAGRAM
R1A RCOMA VREFA ROFSA RFBA VDD D0-D15 (AD5547) D0-D13 (AD5557) D0..D15 OR D0..D13 INPUT REGISTER RS DAC A REGISTER RS DAC A IOUTA AGNDA AGNDB INPUT REGISTER RS DAC B REGISTER RS DAC B IOUTB RFBB ROFSB
WR A0, A1
DAC A DAC B ADDR DECODE
AD5547/AD5557
LDAC R1B RCOMB
DGND
RS MSB
VREFB
Figure 1.
APPLICATIONS
Automatic test equipment Instrumentation Digitally controlled calibration Digital waveform generation
GENERAL DESCRIPTION
The AD5547/AD5557 are dual precision, 16-/14-bit, multiplying, low power, current-output, parallel input, digitalto-analog converters. They are designed to operate from single +5 V supply with 10 V multiplying references for 4-quadrant outputs with up to 4 MHz bandwidth.
VREF U1 -VREF
The built-in 4-quadrant resistors facilitate resistance matching and temperature tracking, which minimize the numbers of components needed for multiquadrant applications. In addition, the feedback resistor (RFB) simplifies the I-V conversion with an external buffer. The AD5547/AD5557 are available in a compact TSSOP-38 package and operate at the extended automotive temperature range of -40C to +125C.
C1
R1A R1 16/14 DATA
RCOMA R2
VREFA
ROFSA ROFS 16-/14-BIT DAC A
RFBA RFB IOUTA AGNDA
C2 U2 VOUTA -VREF TO +VREF
AD5547/AD5557
POWER-ON RESET WR LDAC RS MSB A0, A1 2
WR LDAC RS MSB A0, A1
(ONE CHANNEL SHOWN ONLY)
Figure 2. 16/14-Bit 4-Quadrant Multiplying DAC with Minimum of External Components (Only One Channel Shown)
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 (c) 2004 Analog Devices, Inc. All rights reserved.
04452-0-002
04452-0-013
POWER ON RESET
AD5547/AD5557 TABLE OF CONTENTS
Specifications..................................................................................... 3 Absolute Maximum Ratings............................................................ 5 ESD Caution.................................................................................. 5 Pin Configurations and Function Descriptions ........................... 6 Typical Performance Characteristics ............................................. 9 Circuit Operation ........................................................................... 12 D/A Converter Section .............................................................. 12 Digital Section............................................................................. 13 PCB Layout, Power Supply Bypassing, and Ground Connections ................................................................................ 13 Applications..................................................................................... 14 Unipolar Mode ........................................................................... 14 Bipolar Mode .............................................................................. 16 Outline Dimensions ....................................................................... 19 Ordering Guide .......................................................................... 19
REVISION HISTORY
Revision 0: Initial Version
Rev. 0 | Page 2 of 20
AD5547/AD5557 SPECIFICATIONS
VDD = 2.7 V to 5.5 V, IOUT = Virtual GND, GND = 0 V, VREF = -10 V to +10 V, TA = -40C to +125C, unless otherwise noted. Table 1. Electrical Characteristics
Parameter STATIC PERFORMANCE1 Resolution Relative Accuracy Differential Nonlinearity Output Leakage Current Full-Scale Gain Error Bipolar Mode Gain Error Bipolar Mode Zero-Scale Error Full-Scale Tempco2 REFERENCE INPUT VREF Range REF Input Resistance R1 and R2 Resistance R1-to-R2 Mismatch Feedback and Offset Resistance Input Capacitance2 ANALOG OUTPUT Output Current Output Capacitance2 LOGIC INPUT AND OUTPUT Logic Input Low Voltage Logic Input High Voltage Input Leakage Current Input Capacitance2 INTERFACE TIMING2, 3 Data to WR Setup Time Data to WR Hold Time WR Pulse Width LDAC Pulse Width RS Pulse Width WR to LDAC Delay Time SUPPLY CHARACTERISTICS Power Supply Range Positive Supply Current Power Dissipation Power Supply Sensitivity Symbol N INL DNL IOUT GFSE GE GZSE TCVFS VREF REF R1 and R2 (R1 to R2) RFB, ROFS CREF IOUT COUT VIL VIH IIL CIL tDS tDH tWR tLDAC tRS tLWD VDD = 5 V VDD = 3 V VDD = 5 V VDD = 3 V VDD = 5 V VDD = 3 V VDD = 5 V VDD = 3 V VDD = 5 V VDD = 3 V VDD = 5 V VDD = 3 V 20 35 0 0 20 35 20 35 20 35 0 0 2.7 Logic inputs = 0 V Logic inputs = 0 V VDD = 5% 5.5 10 0.055 0.003 Data = full scale Code dependent VDD = 5 V VDD = 3 V VDD = 5 V VDD = 3 V Conditions AD5547, 1 LSB = VREF/216 = 153 V at VREF = 10 V AD5557, 1 LSB = VREF/214 = 610 V at VREF = 10 V Grade: AD5557C Grade: AD5547B Monotonic Data = zero scale, TA = 25C Data = zero scale, TA = TA maximum Data = full scale Data = full scale Data = full scale Min Typ 16 14 1 2 1 10 20 4 4 3 Max Unit Bits Bits LSB LSB LSB nA nA mV mV mV ppm/C V k k k pF mA pF 0.8 0.4 2.4 2.1 10 10 V V V V A pF ns ns ns ns ns ns ns ns ns ns ns ns V A mW %/%
1 1 1 1 -18 4 4 8
5 5 0.5 10 5 2 200
+18 6 6 1.5 12
VDD RANGE IDD PDISS PSS
Rev. 0 | Page 3 of 20
AD5547/AD5557
Parameter AC CHARACTERISTICS4 Output Voltage Settling Time Reference Multiplying BW DAC Glitch Impulse Multiplying Feedthrough Error Digital Feedthrough Total Harmonic Distortion Output Noise Density Analog Crosstalk Symbol tS BW Q VOUT/VREF QD THD eN CAT Conditions To 0.1% of full scale, data cycles from zero scale to full scale to zero scale VREF = 5 V p-p, data = full scale VREF = 0 V, midscale to midscale - 1 VREF = 100 mV rms, f = 10 kHz WR = 1, LDAC toggles at 1 MHz VREF = 5 V p-p, data = full scale, f = 1 kHz f = 1 kHz, BW = 1 Hz Signal input at Channel A and measure the output at Channel B, f = 1 kHz Min Typ 0.5 4 7 -65 7 -85 12 -95 Max Unit s MHz nV-s dB nV-s dB nV/Hz dB
1
All static performance tests (except IOUT) are performed in a closed-loop system using an external precision OP97 I-V converter amplifier. The device RFB terminal is tied to the amplifier output. The OP97's +IN pin is grounded, and the DAC's IOUT is tied to the OP97's -IN pin. Typical values represent average readings measured at 25C. 2 Guaranteed by design; not subject to production testing. 3 All input control signals are specified with tR = tF = 2.5 ns (10% to 90% of 3 V), and are timed from a voltage level of 1.5 V. 4 All ac characteristic tests are performed in a closed-loop system using an AD841 I-V converter amplifier.
tWR
WR
DATA
tDS
LDAC
tDH tLWD
tLDAC
RS
03810-0-005
tRS
Figure 3. AD5547/AD5557 Timing Diagram
Rev. 0 | Page 4 of 20
AD5547/AD5557 ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter VDD to GND RFB, ROFS, R1, RCOM, and VREF to GND Logic Inputs to GND V(IOUT) to GND Input Current to Any Pin except Supplies Thermal Resistance (JA)1 Maximum Junction Temperature (TJ MAX) Operating Temperature Range Storage Temperature Range Lead Temperature Vapor Phase, 60 s Infrared, 15 s Rating -0.3 V, +8 V -18 V, 18 V -0.3 V, +8 V -0.3 V, VDD + 0.3 V 50 mA 150C -40C to +125C -65C to +150C 215C 220C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
1
Package power dissipation = (TJ MAX - TA)/JA.
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. 0 | Page 5 of 20
AD5547/AD5557 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
D1 1 D0 2 ROFSA 3 RFBA 4 R1A 5 RCOMA 6 VREFA 7 IOUTA 8 AGNDA 9 DGND 10 AGNDA 11 IOUTB 12 VREFB 13 RCOMB 14 R1B 15 RFBB 16 ROFSB 17 WR 18 A0 19
38 37 36 35 34 33 32 31
D2 D3 D4 D5 D6 D7 D8 D9 D10 VDD D11 D12 D13 D14 D15 RS MSB
04452-0-003
NC 1 NC 2 ROFSA 3 RFBA 4 R1A 5 RCOMA 6 VREFA 7 IOUTA 8 AGNDA 9 DGND 10 AGNDB 11 IOUTB 12 VREFB 13 RCOMB 14 R1B 15 RFBB 16 ROFSB 17 WR 18 A0 19 NC = NO CONNECT
38 D0 37 D1 36 D2 35 D3 34 D4 33 D5 32 D6 31 D7
AD5547
TOP VIEW (Not to Scale)
30 29 28 27 26 25 24 23 22 21 20
AD5557
TOP VIEW (Not to Scale)
30 D8 29 VDD 28 D9 27 D10 26 D11 25 D12 24 D13 23 RS 22 MSB 21 LDAC 20 A1
04452-0-004
LDAC A1
Figure 4. AD5547 TSSOP-38 Pin Configuration
Figure 5. AD5557 TSSOP-38 Pin Configuration
Table 3. AD5547 Pin Function Descriptions
Pin No. 1, 2, 24- 28, 30-38 3 4 5 6 Mnemonic D0-D15 ROFSA RFBA R1A RCOMA Function Digital Input Data Bits D0 to D15. Signal level must be VDD + 0.3 V. Bipolar Offset Resistor A. Accepts up to 18 V. In 2-quadrant mode, ROFSA ties to RFBA. In 4-quadrant mode, ROFSA ties to R1A and the external reference. Internal Matching Feedback Resistor A. Connects to the external op amp for I-V conversion. 4-Quandrant Resistor. In 2-quadrant mode, R1A shorts to the VREFA pin. In 4-quadrant mode, R1A ties to ROFSA. Do not connect when operating in unipolar mode. Center Tap Point of the Two 4-Quadrant Resistors, R1A and R2A. In 4-quadrant mode, RCOMA ties to the inverting node of the reference amplifier. In 2-quadrant mode, RCOMA shorts to the VREF pin. Do not connect if operating in unipolar mode. DAC A Reference Input in 2-Quadrant Mode, R2 Terminal in 4-Quadrant Mode. In 2-quadrant mode, VREFA is the reference input with constant input resistance versus code. In 4-quadrant mode, VREFA is driven by the external reference amplifier. DAC A Current Output. Connects to the inverting terminal of external precision I-V op amp for voltage output. DAC A Analog Ground. Digital Ground. DAC B Analog Ground. DAC B Current Output. Connects to inverting terminal of external precision I-V op amp for voltage output. DAC B Reference Input Pin. Establishes DAC full-scale voltage. Constant input resistance versus code. If configured with an external op amp for 4-quadrant multiplying, VREFB becomes -VREF. Center Tap Point of the Two 4-Quadrant Resistors, R1B and R2B. In 4-quadrant mode, RCOMB ties to the inverting node of the reference amplifier. In 2-quadrant mode, RCOMB shorts to the VREF pin. Do not connect if operating in unipolar mode. 4-Quandrant Resistor. In 2-quadrant mode, R1B shorts to the VREFB pin. In 4-quadrant mode, R1B ties to ROFSB. Do not connect if operating in unipolar mode. Internal Matching Feedback Resistor B. Connects to external op amp for I-V conversion. Bipolar Offset Resistor B. Accepts up to 18 V. In 2-quadrant mode, ROFSB ties to RFBB. In 4-quadrant mode, ROFSB ties to R1B and an external reference.
7
VREFA
8 9 10 11 12 13 14
IOUTA AGNDA DGND AGNDB IOUTB VREFB RCOMB
15 16 17
R1B RFBB ROFSB
Rev. 0 | Page 6 of 20
AD5547/AD5557
Pin No. 18 19 20 21 22 23 29 Mnemonic WR A0 A1 LDAC MSB RS VDD Function Write Control Digital Input In, Active Low. WR transfers shift register data to the DAC register on the rising edge. Signal level must be VDD + 0.3 V. Address Pin 0. Signal level must be VDD + 0.3 V. Address Pin 1. Signal level must be VDD + 0.3 V. Digital Input Load DAC Control. Signal level must be VDD + 0.3 V. Power-On Reset State. MSB = 0 corresponds to zero-scale reset; MSB = 1 corresponds to midscale reset. The signal level must be VDD + 0.3 V. Active low resets both input and DAC registers. Resets to zero-scale if MSB = 0, and to midscale if MSB = 1. Signal level must be VDD + 0.3 V. Positive Power Supply Input. The specified range of operation is 2.7 V to 5.5 V.
Table 4. AD5557 Pin Function Descriptions
Pin No. 1, 2 3 4 5 6 Mnemonic NC ROFSA RFBA R1A RCOMA Function No Connection. Do not connect anything other than dummy pads to these pins. Bipolar Offset Resistor A. Accepts up to 18 V. In 2-quadrant mode, ROFSA ties to RFBA. In 4-quadrant mode, ROFSA ties to R1A and the external reference. Internal Matching Feedback Resistor A. Connects to the external op amp for I-V conversion. 4-Quandrant Resistor. In 2-quadrant mode, R1A shorts to the VREFA pin. In 4-quadrant mode, R1A ties to ROFSA. Do not connect when operating in unipolar mode. Center Tap Point of the Two 4-Quadrant Resistors, R1A and R2A. In 4-quadrant mode, RCOMA ties to the inverting node of the reference amplifier. In 2-quadrant mode, RCOMA shorts to the VREF pin. Do not connect if operating in unipolar mode. DAC A Reference Input in 2-Quadrant Mode, R2 Terminal in 4-Quadrant Mode. In 2-quadrant mode, VREFA is the reference input with constant input resistance versus code. In 4-quadrant mode, VREFA is driven by the external reference amplifier. DAC A Current Output. Connects to the inverting terminal of external precision I-V op amp for voltage output. DAC A Analog Ground. Digital Ground. DAC B Analog Ground. DAC B Current Output. Connects to inverting terminal of external precision I-V op amp for voltage output. DAC B Reference Input Pin. Establishes DAC full-scale voltage. Constant input resistance versus code. If configured with an external op amp for 4-quadrant multiplying, VREFB becomes -VREF. Center Tap Point of the Two 4-Quadrant Resistors, R1B and R2B. In 4-quadrant mode, RCOMB ties to the inverting node of the reference amplifier. In 2-quadrant mode, RCOMB shorts to the VREF pin. Do not connect if operating in unipolar mode. 4-Quandrant Resistor. In 2-quadrant mode, R1B shorts to the VREFB pin. In 4-quadrant mode, R1B ties to ROFSB. Do not connect if operating in unipolar mode. Internal Matching Feedback Resistor B. Connects to external op amp for I-V conversion. Bipolar Offset Resistor B. Accepts up to 18 V. In 2-quadrant mode, ROFSB ties to RFBB. In 4-quadrant mode, ROFSB ties to R1B and an external reference. Write Control Digital Input In, Active Low. Transfers shift register data to the DAC register on the rising edge. Signal level must be VDD + 0.3 V. Address Pin 0. Signal level must be VDD + 0.3 V. Address Pin 1. Signal level must be VDD + 0.3 V. Digital Input Load DAC Control. Signal level must be VDD + 0.3 V. Power-On Reset State. MSB = 0 corresponds to zero-scale reset; MSB = 1 corresponds to midscale reset. The signal level must be VDD + 0.3 V. Active low resets both input and DAC registers. Resets to zero-scale if MSB = 0, and to midscale if MSB = 1. Signal level must be VDD + 0.3 V. Digital Input Data Bits D13 to D0. Signal level must be VDD + 0.3 V. Positive Power Supply Input. The specified range of operation is 2.7 V to 5.5 V.
7
VREFA
8 9 10 11 12 13 14
IOUTA AGNDA DGND AGNDB IOUTB VREFB RCOMB
15 16 17 18 19 20 21 22 23 24-28, 30-38 29
R1B RFBB ROFSB WR A0 A1 LDAC MSB RS D13 to D0 VDD
Rev. 0 | Page 7 of 20
AD5547/AD5557
Table 5. Address Decoder Pins
A1 0 0 1 1 A0 0 1 0 1 Output Update DAC A None DAC A and B DAC B
Table 6. Control Inputs
RS 0 1 1 1 1 1 WR X 0 1 0 LDAC X 0 1 1 Register Operation Reset the output to 0 with MSB pin = 0; reset the output to midscale with MSB pin = 1. Load the input register with data bits. Load the DAC register with the contents of the input register. The input and DAC registers are transparent. When LDAC and WR are tied together and programmed as a pulse, the data bits are loaded into the input register on the falling edge of the pulse, and are then loaded into the DAC register on the rising edge of the pulse. No register operation.
1
0
Rev. 0 | Page 8 of 20
AD5547/AD5557 TYPICAL PERFORMANCE CHARACTERISTICS
1.0 0.8 0.6 0.4
DNL (LSB)
03810-0-006
1.0 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0 0 2048 4096 6144 8192 CODE (Decimal)
04452-0-010
INL (LSB)
0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0 0 8192
16384 24576 32768 40960 49152 57344 65536 CODE (Decimal)
10240 12288 14336 16384
Figure 6. AD5547 Integral Nonlinearity Error
Figure 9. AD5557 Differential Nonlinearity Error
1.0 0.8 0.6 0.4
1.5 VREF = 2.5V TA = 25C 1.0
LINEARITY ERROR (LSB)
0.5 INL 0 DNL -0.5
DNL (LSB)
0.2 0 -0.2 -0.4 -0.6
03810-0-007
-0.8 -1.0 0 8192
GE -1.5
16384 24576 32768 40960 49152 57344 65536 CODE (Decimal)
2
4
6 8 SUPPLY VOLTAGE VDD (V)
10
Figure 7. AD5547 Differential Nonlinearity Error
Figure 10. Linearity Error vs. VDD
1.0 0.8
5 VDD = 5V TA = 25C
SUPPLY CURRENT IDD (LSB)
0.6 0.4
4
INL (LSB)
0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0 0 2048 4096 6144 8192 CODE (Decimal)
03810-0-008
3
2
1
03810-0-011
0
10240 12288 14336 16384
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
LOGIC INPUT VOLTAGE VIH (V)
Figure 8. AD5557 Integral Nonlinearity Error
Figure 11. Supply Current vs. Logic Input Voltage
Rev. 0 | Page 9 of 20
03810-0-010
-1.0
AD5547/AD5557
3.0
2.5
LDAC (5V/DIV)
SUPPLY CURRENT (mA)
2.0 0x5555 1.5 0x8000 1.0 0xFFFF 0x0000
03810-0-012
VDD = 5V VREF = 10V CODES 0x8000 0x7FFF
VOUT (50mV/DIV)
03810-0-015
0.5
0 10k
100k
1M CLOCK FREQUENCY (Hz)
10M
100M
0
0.5
1.0
1.5
2.0
2.5 3.0 TIME (s)
3.5
4.0
4.5
5.0
Figure 12. AD5547 Supply Current vs. Clock Frequency
Figure 15. AD5547 Midscale Transition and Digital Feedthrough
90 80 70 60
PSRR (-dB)
VDD = 5V 10% VREF = 10V
50 40 30 20
04452-0-014
0xFFFF 0x8000 0x4000 0x2000 0x1000 0x0800 0x0400 0x0200 0x0100 0x0080 0x0040 0x0020 0x0010 0x0008 0x0004 0x0002 0x0001 0x0000
REF LEVEL 0.000dB
/DIV 12.000dB
MARKER 4 41 677.200Hz MAG (A/R) -2.939db -12dB -24dB -36dB -48dB -60dB -72dB -84dB -96dB -108dB
03810-0-016
10 0 10
100
1k 10k FREQUENCY (Hz)
100k
1M
10 100 START 10.000Hz
1k
10k
100k 1M 10M STOP 50 000 000.000Hz
Figure 13. Power Supply Rejection Ratio vs. Frequency
Figure 16. AD5547 Unipolar Reference Multiplying Bandwidth
0 -12
1
REF LEVEL 0.000dB
ALL BITS ON D15 AND D14 ON D15 AND D13 ON D15 AND D12 ON D15 AND D11 ON D15 AND D10 ON D15 AND D9 ON D15 AND D8 ON D15 AND D7 ON D15 AND D6 ON D15 AND D5 ON D15 AND D4 ON D15 AND D3 ON D15 AND D2 ON D15 AND D1 ON
/DIV 12.000dB
LDAC
-24 -36 -48
2
-60 -72 -84
VOUT
03810-0-014
-96 -108
D15 AND D0 ON D15 ON
03810-0-017
CH1 5.00V CH2 2.00V
M 200ns
A CH1 2.70V B CH1 -6.20V 400.00ns
Figure 14. Settling Time from Full Scale to Zero Scale
-120 10 100 START 10.000Hz
1k
10k
100k 1M 10M STOP 10 000 000.000Hz
Figure 17. AD5547 Bipolar Reference Multiplying Bandwidth (Codes from Midscale to Full Scale)
Rev. 0 | Page 10 of 20
AD5547/AD5557
0 -12 -24 -36 -48 -60 -72 -84 -96 -108
D14 AND D0 ON D14 ON
03810-0-018
REF LEVEL 0.000dB
ALL BITS OFF D14 ON D14 AND D13 ON D14 AND D12 ON D14 AND D11 ON D14 AND D10 ON D14 AND D9 ON D14 AND D8 ON D14 AND D7 ON D14 AND D6 ON D14 AND D5 ON D14 AND D4 ON D14 AND D3 ON D14 AND D2 ON D14 AND D1 ON
/DIV 12.000dB
-120 10 100 START 10.000Hz
1k
10k
100k 1M 10M STOP 10 000 000.000Hz
Figure 18. AD5547 Bipolar Reference Multiplying Bandwidth (Codes from Midscale to Zero Scale)
Rev. 0 | Page 11 of 20
AD5547/AD5557 CIRCUIT OPERATION
D/A CONVERTER SECTION
The AD5547/AD5557 are 16-/14-bit, multiplying, current output, parallel input DACs. The devices operate from a single 2.7 V to 5.5 V supply, and provide both unipolar (0 V to -VREF or 0 V to +VREF), and bipolar (VREF) output ranges from -18 V to +18 V references. In addition to the precision conversion RFB commonly found in current output DACs, there are three additional precision resistors for 4-quadrant bipolar applications. The AD5547/AD5557 consist of two groups of precision R-2R ladders, which make up the 12/10 LSBs, respectively. Furthermore, the 4 MSBs are decoded into 15 segments of resistor value 2R. Figure 19 shows the architecture of the 16-bit AD5547. Each of the 16 segments and the R-2R ladder carries an equally weighted current of one-sixteenth of full scale. The feedback resistor RFB and 4-quadrant resistor ROFS have values of 10 k. Each 4-quadrant resistor, R1 and R2, equals 5 k. In 4-quadrant operation, R1, R2, and an external op amp work together to invert the reference voltage and apply it to the VREF input. With ROFS and RFB connected as shown in Figure 2, the output can swing from -VREF to +VREF. The reference voltage inputs exhibit a constant input resistance of 5 k 20%. The impedance of IOUT, the DAC output, is code dependent. External amplifier choice should take into account
VREF R2 5k RCOM R1 5k R1 R 40k 2R 80k R 40k 2R 80k R 40k 2R 80k R 40k 2R 80k R 40k 2R 80k R 40k 2R 80k R 40k 2R 80k R 40k 2R 80k 2R 80k 8-BIT R2R 4 MSB 15 SEGMENTS
the variation of the AD5547/AD5557 output impedance. The feedback resistance in parallel with the DAC ladder resistance dominates output voltage noise. To maintain good analog performance, it is recommended that the power supply is bypassed with a 0.01 F to 0.1 F ceramic or chip capacitor in parallel with a 1 F tantalum capacitor. Also, to minimize gain error, PCB metal traces between VREF and RFB should match. Every code change of the DAC corresponds to a step function; gain peaking at each output step may occur if the op amp has limited GBP and excessive parasitic capacitance present at the op amp's inverting node. A compensation capacitor, therefore, may be needed between the I-V op amp inverting and output nodes to smooth the step transition. Such a compensation capacitor should be found empirically, but a 20 pF capacitor is generally adequate for the compensation. The VDD power is used primarily by the internal logic to drive the DAC switches. Note that the output precision degrades if the operating voltage falls below the specified voltage. Users should also avoid using switching regulators because device power supply rejection degrades at higher frequencies.
2R 80k
2R 80k
2R 80k
2R 80k
ROFS RA RB R 2R 80k R 2R 80k R 2R 80k R 2R 80k 2R 80k 4-BIT R2R IOUT AGND 15 8 4 ADDRESS DECODER 10k RFB 10k
LDAC
LDAC
DAC REGISTER
RS
RS
WR
WR
INPUT REGISTER
RS
04452-0-011
D15 D14
D0
Figure 19. 16-Bit AD5547 Equivalent R-2R DAC Circuit with Digital Section, One Channel Shown
Rev. 0 | Page 12 of 20
AD5547/AD5557
DIGITAL SECTION
The AD5547/AD5557 have 16-/14-bit parallel inputs. The devices are double-buffered with 16-/14-bit registers. The double-buffered feature allows the simultaneous update of several AD5547/AD5557s. For the AD5547, the input register is loaded directly from a 16-bit controller bus when WR is brought low. The DAC register is updated with data from the input register when LDAC is brought high. Updating the DAC register updates the DAC output with the new data (see Figure 19). To make both registers transparent, tie WR low and LDAC high. The asynchronous RS pin resets the part to zero scale if the MSB pin = 0, and to midscale if the MSB pin = 1. The voltage reference temperature coefficient and long-term drift are primary considerations. For example, a 5 V reference with a TC of 5 ppm/C means the output changes by 25 V/C. As a result, a reference operating at 55C contributes an additional 750 V full-scale error. Similarly, the same 5 V reference with a 50 ppm long-term drift means the output may change by 250 V over time. Therefore, it is practical to calibrate a system periodically to maintain its optimum precision.
PCB LAYOUT, POWER SUPPLY BYPASSING, AND GROUND CONNECTIONS
It is a good practice to employ a compact, minimum-lead length PCB layout design. The leads to the input should be as short as possible to minimize IR drop and stray inductance. The PCB metal traces between VREF and RFB should also be matched to minimize gain error. It is also essential to bypass the power supply with quality capacitors for optimum stability. Supply leads to the device should be bypassed with 0.01 F to 0.1 F disc or chip ceramic capacitors. Low ESR 1 F to 10 F tantalum or electrolytic capacitors should also be applied at the supply in parallel with the ceramic capacitor to minimize transient disturbance and filter out low frequency ripple. To minimize the digital ground bounce, the AD5547/AD5557 DGND terminal should be joined with the AGND terminal at a single point. Figure 21 illustrates the basic supply-bypassing configuration and AGND/DGND connection for the AD5547/AD5557.
VDD 0.1F
ESD Protection Circuits
All logic input pins contain back-biased ESD protection Zeners connected to ground (GND) and VDD, as shown in Figure 20. As a result, the voltage level of the logic input should not be greater than the supply voltage.
VDD DIGITAL INPUTS
5k
DGND
Figure 20. Equivalent ESD Protection Circuits
Amplifier Selection
In addition to offset voltage, the bias current is important in op amp selection for precision current output DACs. A 30 nA input bias current in the op amp contributes to 1 LSB in the AD5547's full-scale error. The OP1177 and AD8628 op amps are good candidates for the I-V conversion.
03810-0-020
Reference Selection
The initial accuracy and rated output of the voltage reference determine the full-span adjustment. The initial accuracy of the reference is usually a secondary concern because it can be trimmed. Figure 26 shows an example of a trimming circuit. The zero-scale error can also be minimized by standard op amp nulling techniques.
+ C2 5V -
C1 1F
AD5547/AD5557
AGND
DGND
Figure 21. Power Supply Bypassing
Rev. 0 | Page 13 of 20
04452-0-015
AD5547/AD5557 APPLICATIONS
UNIPOLAR MODE
2-Quadrant Multiplying Mode, VOUT = 0 V to -VREF
The AD5547/AD5557 DAC architecture uses a current-steering R-2R ladder design that requires an external reference and op amp to convert the unipolar mode of output voltage to VOUT = -VREF x D/65,536 (AD5547) VOUT = -VREF x D/16,384 (AD5557) where D is the decimal equivalent of the input code. (1) (2) In this case, the output voltage polarity is opposite the VREF polarity (see Figure 22). Table 7 shows the negative output versus code for the AD5547. Table 7. AD5547 Unipolar Mode Negative Output vs. Code
D in Binary 1111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 VOUT (V) -VREF(65,535/65,536) -VREF/2 -VREF(1/65,536) 0
+5V C1 1F
2 C2 0.1F VIN U3 ADR03 TRIM VOUT GND VREFA 4 VDD C3 0.1F R1A R1 RCOMA R2 ROFSA ROFS 2.5V RFBA RFB IOUTA AGNDA +V VOUTA -2.5V TO 0V C4 C5 2 -5V 0.1F
04452-0-007
5 6 +2.5V
C6
2.2pF
AD5547/AD5557
U1
16-/14-BIT
AD8628
-V
16/14 DATA WR LDAC RS WR LDAC RS MSB A0, A1 MSB A0, A1
1F
Figure 22. Unipolar 2-Quadrant Multiplying Mode, VOUT = 0 to -VREF
Rev. 0 | Page 14 of 20
AD5547/AD5557
2-Quadrant Multiplying Mode, VOUT = 0 V to +VREF
The AD5547/AD5557 are designed to operate with either positive or negative reference voltages. As a result, a positive output can be achieved with an additional op amp, (see Figure 23); the output becomes VOUT = +VREF x D/65,536 (AD5547) VOUT = +VREF x D/16,384 (AD5557) (3) (4) Table 8 shows the positive output versus code for the AD5547. Table 8. AD5547 Unipolar Mode Positive Output vs. Code
D in Binary 1111 1111 1111 1111 1000 0000 0000 0000 0000 0000 0000 0001 0000 0000 0000 0000 VOUT (V) +VREF(65,535/65,536) +VREF/2 +VREF(1/65,536) 0
+5V C1 1F C2 1F
2 U3 VIN TRIM VOUT GND 4 ADR03 +2.5V R1A VDD C3 0.1F R1 RCOMA R2 VREFA ROFSA ROFS 16-/14-BIT RFBA RFB IOUTA C6 U2B C7 -2.5V +5V C4 1F 5 6 U2A
AD8628
C5 0.1F
+V
AD5547/AD5557
16/14 DATA WR LDAC RS WR LDAC RS MSB A0, A1 MSB A0, A1
AGNDA
AD8628
-V 0V TO +2.5V
VOUTA
2
Figure 23. Unipolar 2-Quadrant Multiplying Mode, VOUT = 0 to +VREF
Rev. 0 | Page 15 of 20
04452-0-005
AD5547/AD5557
+15V C1 1F C2 0.1F 2 U3 VIN TRIM VOUT GND U2A 4 ADR01 AD8512 C8 5 6
-10V
+10V
R1A +5V VDD R1
RCOMA
VREFA R2
ROFSA ROFS
RFBA RFB C9 U2B C5 0.1F +15V C4 1F
C3 0.1F
AD5547/AD5557
U1
16-/14-BIT DAC A
IOUTA +V VOUT AD8512 -V C6 0.1F -10V TO +10V C7 1F
04452-0-006
16/14 DATA
AGNDA
WR LDAC RS WR LDAC RS MSB A0, A1
MSB A0, A1
2
-15V
Figure 24. 4-Quadrant Multiplying Mode, VOUT = -VREF to +VREF
BIPOLAR MODE
4-Quadrant Multiplying Mode, VOUT = -VREF to +VREF
The AD5547/AD5557 contain on-chip all the 4-quadrant resistors necessary for precision bipolar multiplying operation. Such a feature minimizes the number of exponent components to only a voltage reference, dual op amp, and compensation capacitor (see Figure 24). For example, with a +10 V reference, the circuit yields a precision, bipolar -10 V to +10 V output. Table 9 shows some of the results for the 16-bit AD5547. VOUT = (D/32768 - 1) x VREF (AD5547) VOUT = (D/16384 - 1) x VREF (AD5557) (5) (6) Table 9. AD5547 Output vs. Code
D in Binary 1111 1111 1111 1111 1000 0000 0000 0001 1000 0000 0000 0000 0111 1111 1111 1111 0000 0000 0000 0000 VOUT +VREF (32,767/32,768) +VREF (1/32,768) 0 -VREF (1/32,768) -VREF
Rev. 0 | Page 16 of 20
AD5547/AD5557
AC Reference Signal Attenuator
Besides handling the digital waveform decoded from the parallel input data, the AD5547/AD5557 can also handle low frequency ac reference signals for signal attenuation, channel equalization, and waveform generation applications. The maximum signal range can be up to 18 V (See Figure 25).
System Calibration
The initial accuracy of the system can be adjusted by trimming the voltage reference ADR0x with a digital potentiometer (see Figure 26). The AD5170 provides a one-time programmable (OTP), 8-bit adjustment that is ideal and reliable for such calibration. ADI's OTP digital potentiometer comes with programmable software that simplifies factory calibration.
U2A
OP2177 +10V -10V R1A +5V VDD C1 1F C2 0.1F R1 RCOMA VREFA ROFSA ROFS 16-/14-BIT RFBA RFB IOUTA AGNDA C7 +15V C4 C6 U2B 1F
R2
C5 0.1F
AD5547/AD5557
U1
+V OP2177 -V C8 1F
VOUTA
16/14 DATA WR LDAC RS WR LDAC RS MSB A0, A1 MSB A0, A1
C9 0.1F
04452-0-008
2 -15V
Figure 25. Signal Attenuator with AC Reference
+5V C1 1F C2 0.1F
2 U3 VIN TRIM VOUT GND 4 ADR03 5 6
AD5170
R3 U4 10k 470k B R7 1k U2
AD8628
C7 +2.5V +5V R1A VDD R1 RCOMA R2 VREFA ROFSA ROFS 16-/14-BIT RFBA RFB IOUTA AGNDA C4 C6 U2B 1F -2.5V
C5 0.1F
C3 0.1F
AD5547/AD5557
U1 WR LDAC RS MSB A0, A1
+V
VOUTA 0V TO +2.5V
AD8628
-V
16/14 DATA
REF 01/AD
WR LDAC RS MSB A0, A1
2
Figure 26. Full-Span Calibration
Rev. 0 | Page 17 of 20
04452-0-009
AD5547/AD5557
Table 10 lists the latest DACS available from Analog Devices. Table 10. ADI Current Output DACs
Model AD5425 AD5426 AD5450 AD5424 AD5429 AD5428 AD5432 AD5451 AD5433 AD5439 AD5440 AD5443 AD5452 AD5445 AD5444 AD5449 AD5415 AD5447 AD5405 AD5453 AD5553 AD5556 AD5446 AD5555 AD5557 AD5543 AD5546 AD5545 AD5547 Bits 8 8 8 8 8 8 10 10 10 10 10 12 12 12 12 12 12 12 12 14 14 14 14 14 14 16 16 16 16 Outputs 1 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 1 1 2 2 Interface SPI, 8-Bit Load SPI SPI Parallel SPI Parallel SPI SPI Parallel SPI Parallel SPI SPI Parallel SPI SPI SPI Parallel Parallel SPI SPI Parallel SPI SPI Parallel SPI Parallel SPI Parallel Package MSOP-10 MSOP-10 SOT23-8 TSSOP-16 TSSOP-16 TSSOP-20 MSOP-10 SOT23-8 TSSOP-20 TSSOP-16 TSSOP-24 MSOP-10 SOT23-8 TSSOP-20 MSOP-10 TSSOP-16 TSSOP-24 TSSOP-24 LFCSP-40 SOT23-8 MSOP-8 TSSOP-28 MSOP-10 TSSOP-16 TSSOP-38 MSOP-8 TSSOP-28 TSSOP-16 TSSOP-38 Comments Fast 8-bit load; see also AD5426. See also AD5425 fast load. See also AD5425 fast load.
See also AD5452 and AD5444. Higher accuracy version of AD5443; see also AD5444. Higher accuracy version of AD5443; see also AD5452. Uncommitted resistors. Uncommitted resistors.
MSOP version of AD5453; compatible with AD5443, AD5432, and AD5426.
Rev. 0 | Page 18 of 20
AD5547/AD5557 OUTLINE DIMENSIONS
9.80 9.70 9.60
38
20
4.50 4.40 4.30 6.40 BSC
1 19
PIN 1 1.20 MAX 8 0
0.15 0.05 COPLANARITY 0.10 0.50 BSC 0.27 0.17
SEATING PLANE
0.20 0.09
0.70 0.60 0.45
COMPLIANT TO JEDEC STANDARDS MO-153BD-1
Figure 27. 38-Lead Thin Shrink Small Outline Package [TSSOP] (RU-38) Dimension s shown in millimeters
ORDERING GUIDE
Model AD5547BRU AD5547BRU-REEL7 AD5557CRU AD5557CRU-REEL7 Resolution (Bits) 16 16 14 14 DNL (LSB) 1 1 1 1 INL (LSB) 2 2 1 1 Temperature Range -40C to +125C -40C to +125C -40C to +125C -40C to +125C Ordering Quantity 50 1,000 50 1,000 Package Description Thin Shrink Small Outline Package (TSSOP) Thin Shrink Small Outline Package (TSSOP) Thin Shrink Small Outline Package (TSSOP) Thin Shrink Small Outline Package (TSSOP) Package Option RU-38 RU-38 RU-38 RU-38
Rev. 0 | Page 19 of 20
AD5547/AD5557 NOTES
(c) 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04452-0-4/04(0)
Rev. 0 | Page 20 of 20


▲Up To Search▲   

 
Price & Availability of AD5424

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X